
Towards a Toolbox for Relational Probabilistic
Knowledge Representation, Reasoning, and

Learning

Marc Finthammer1, Sebastian Loh2, and Matthias Thimm2

1 Department of Computer Science, FernUniversität in Hagen, Germany
2 Department of Computer Science, Technische Universität Dortmund, Germany

draft – 2009-08-03

Abstract. This paper presents KReator, a versatile and easy-to-use
toolbox for statistical relational learning currently under development.
The research on combining probabilistic models and first-order theory
put forth a lot of different approaches in the past few years. While every
approach has advantages and disadvantages the variety of prototypi-
cal implementations make thorough comparisons of different approaches
difficult. KReator aims at providing a common and simple interface
for representing, reasoning, and learning with different relational prob-
abilistic approaches. We give an overview on the system architecture of
KReator and illustrate its usage.

1 Introduction

Probabilistic inductive logic programming (or statistical relational learning) is a
very active field in research at the intersection of logic, probability theory, and
machine learning, see [1, 2] for some excellent overviews. This area investigates
methods for representing probabilistic information in a relational context for
both reasoning and learning. Many researchers developed liftings of propositional
probabilistic models to the first-order case in order to take advantage of methods
and algorithms already developed. Among these are the well-known Bayesian
logic programs [3] and Markov logic networks [4] which extend respectively Bayes
nets and Markov nets [5] and are based on knowledge-based model construction
[6]. Other approaches also employ Bayes nets for their theoretical foundation
like logical Bayesian networks [7] and relational Bayesian networks [8]; or they
are influenced by other fields of research like probabilistic relational models [9]
by database theory and P-log [10] by answer set programming. There are also
some few approaches to apply maximum entropy methods to the relational case
[11, 12]. But because of this variety of approaches and the absence of a common
interface there are only few comparisons of different approaches, see for example
[13, 14].

In this paper we describe the KReator toolbox, a versatile integrated de-
velopment environment for knowledge engineering in the field of statistical re-
lational learning. KReator is currently under development and part of the

ongoing KReate project3 which aims at developing a common methodology for
learning, modelling and inference in a relational probabilistic framework. As sta-
tistical relational learning is a (relatively) young research area there are many
different proposals for integrating probability theory in first-order logic, some
of them mentioned above. Although many researchers have implementations of
their approaches available, most of these implementations are prototypical, and
in order to compare different approaches one has to learn the usage of different
tools. KReator aims at providing a common interface for different approaches
to statistical relational learning and to support the researcher and knowledge
engineer in developing knowledge bases and using them in a common and easy-
to-use fashion. Currently, the development of KReator is still in a very early
stage but already supports Bayesian logic programs, Markov logic networks, and
in particular a new approach for using maximum entropy methods in a relational
context [11].

The rest of this paper is organized as follows. In Sec. 2 we give an overview
on the approaches of statistical relational learning that are currently supported
by KReator, i. e. Bayesian logic programs, Markov logic networks, and the
relational maximum entropy approach. We go on in Sec. 3 with presenting the
system architecture of KReator and motivate the main design choices. In Sec. 4
we give a short manual-style overview on the usage of KReator and in Sec. 5
we give some hints on future work and conclude.

2 Relational Probabilistic Knowledge Representation

In the following we give some brief overview on frameworks for relational proba-
bilistic reasoning that are already implemented in KReator. These are Bayesian
logic programs originally due to Kersting et. al. [3], Markov logic networks orig-
inally due to Domingos et. al. [4], and a framework employing reasoning with
maximum entropy methods that is currently in development [11]. We illustrate
the use of these frameworks on a common example, the well-known burglary
example [5, 1].

Example 1. We consider a scenario where someone—let’s call him James—is on
the road and gets a call from his neighbor saying that the alarm of James’ house
is ringing. James has some uncertain beliefs about the relationships between bur-
glaries, types of neighborhoods, natural disasters, and alarms. For example, he
knows that if there is a tornado warning for his home place, then the probability
of a tornado triggering the alarm of his house is 0.9. A reasonable information
to infer from his beliefs and the given information is “What is the probability of
an actual burglary?”.

2.1 Bayesian Logic Programs

Bayesian logic programming is an approach to combine logic programming and
Bayesian networks [3]. Bayesian logic programs (BLPs) use a standard logic

3 http://www.fernuni-hagen.de/wbs/research/kreate/index.html

programming language and attach to each logical clause a set of probabilities,
which define a conditional probability distribution of the head of the clause given
specific instantiations of the body of the clause.
In contrast to first-order logic, BLPs employ an extended form of predicates and
atoms. In BLPs, Bayesian predicates are predicates that feature an arbitrary set
as possible states that are not necessarily the boolean values {true, false}. For
example, the Bayesian predicate bloodtype/1 may represent the blood type of
a person using the possible states S(bloodtype) = {a, b, ab, 0} [3]. Analogously
to first-order logic, Bayesian predicates can be instantiated to Bayesian atoms
using constants and variables and then each ground Bayesian atom represents a
single random variable. If A is a Bayesian atom of the Bayesian predicate p we
set S(A) = S(p).

Definition 1 (Bayesian Clause, Conditional Probability Distribution).
A Bayesian clause c is an expression (H | B1, . . . , Bn) with Bayesian atoms
H,B1, . . . , Bn. With a Bayesian clause c with the form (H | B1, . . . , Bn) we
associate a function cpdc : S(H)× S(B1)× . . .× S(Bn)→ [0, 1] that fulfills

∀b1 ∈ S(B1), . . . , bn ∈ S(Bn) :
∑

h∈S(H)

cpdc(h, b1, . . . , bn) = 1 .

We call cpdc a conditional probability distribution. Let CPDp denote the set of
all conditional probability distributions {cpdH|B1,...Bn | H is an atom of p}.

A function cpdc for a Bayesian clause c expresses the conditional probability
distribution P (head(c) | body(c)) and thus partially describes an underlying
probability distribution P .

Example 2. We represent Ex. 1 as a set {c1, c2, c3} of Bayesian clauses with

c1 : (alarm(X) | burglary(X))
c2 : (alarm(X) | lives in(X,Y), tornado(Y))
c3 : (burglary(X) | neighborhood(X))

where S(tornado/1) = S(lives in/2) = S(alarm) = S(burglary) = {true, false}
and S(neighborhood) = {good, average, bad}. For each Bayesian clause ci, we
define a function cpdci which expresses our subjective beliefs, e. g., for clause c2
we define

cpdc2(true, true, true) = 0.9 cpdc2(true, true, false) = 0.01
cpdc2(true, false, true) = 0 cpdc2(true, false, false) = 0
cpdc2(false, true, true) = 0.1 cpdc2(false, true, false) = 0.99
cpdc2(false, false, true) = 1 cpdc2(false, false, false) = 1

Considering clauses c1 and c2 in Ex. 2 one can see that it is possible to have
multiple clauses with the same head. BLPs facilitate combining rules in or-
der to aggregate probabilities that arise from applications of different Bayesian
clauses. A combining rule crp for a Bayesian predicate p/n is a function crp :

P(CPDp) → CPDp that assigns to the conditional probability distributions of
a set of Bayesian clauses a new conditional probability distribution that rep-
resents the joint probability distribution obtained from aggregating the given
clauses4. For example, given clauses c1 = (b(X) | a1(X)) and c2 = (b(X) |
a2(X)) the result f = crb({cpdc1 , cpdc2}) of the combining rule crb is a function
f : S(b) × S(a1) × S(a2) → [0, 1]. Appropriate choices for such functions are
average or noisy-or, cf. [3].

Example 3. We continue Ex. 2. Suppose noisy-or to be the combining rule
for alarm. Then the joint conditional probability distribution cpdc′ for c′ =
(alarm(X) | burglary(X), lives in(X,Y), tornado(Y)) can be computed via

cpdc′(t1, t2, t3, t4) = Z ∗ (1− (1− cpdc1(t1, t2)) ∗ (1− cpdc2(t1, t3, t4)))

for any t1, t2, t3, t4 ∈ {true, false}. Here, Z is a normalizing constant for main-
taining the property of conditional probability distributions to sum up to one
for any specific head value.

Now we are able to define Bayesian logic programs as follows.

Definition 2 (Bayesian Logic Program). A Bayesian logic program B is a
tuple B = (C,D,R) with a (finite) set of Bayesian clauses C = {c1, . . . , cn},
a set of conditional probability distributions (one for each clause in C) D =
{cpdc1 , . . . , cpdcn}, and a set of combining functions (one for each Bayesian
predicate appearing in C) R = {crp1 , . . . , crpm}.

Semantics are given to Bayesian logic programs via transformation into the
propositional case, i. e. into Bayesian networks [5]. Given a specific (finite) uni-
verse U a Bayesian network BN can be constructed by introducing a node for
every grounded Bayesian atom in B. Using the conditional probability distribu-
tions of the grounded clauses and the combining rules of B a (joint) conditional
probability distribution can be specified for any node in BN . If BN is acyclic this
transformation uniquely determines a probability distribution P on the grounded
Bayesian atoms of B which can be used to answer queries.

A detailed description of the above (declarative) semantics and an equivalent
procedural semantics which is based on SLD resolution are given in [3].

2.2 Markov Logic Networks

Markov logic [4] establishes a framework which combines Markov networks [5]
with first-order logic to handle a broad area of statistical relational learning
tasks. The Markov logic syntax complies with first-order logic5, however each
formula is quantified by an additional weight value. The semantics of a set of
Markov logic formulas is explained by a probability distribution over possible
worlds. A possible world assigns a truth value to every possible ground atom

4 P(S) denotes the power set of a set S.
5 Although Markov logic also covers functions, we will omit this fact, and only consider

constants.

(constructible from the set of predicates and the set of constants). The prob-
ability distribution is calculated as a log-linear model over weighted ground
formulas.
The fundamental idea in Markov logic is that first-order formulas are not handled
as hard constraints. Instead, each formula is more or less softened depending
on its weight. So a possible world may violate a formula without necessarily
receiving a zero probability. Rather a world is more probable, the less formulas
it violates. A formula’s weight specifies how strong the formula is, i. e. how much
the formula influences the probability of a satisfying world versus a violating
world. This way, the weights of all formulas influence the determination of a
possible world’s probability in a complex manner. One clear advantage of this
approach is that Markov logic can directly handle contradictions in a knowledge
base, since the (contradictious) formulas are weighted against each other anyway.
Furthermore, by assigning appropriately high weight values to certain formulas,
it can be enforced that these formulas will be handled as hard constraints, i. e.
any world violating such a hard formula will have a zero probability. Thus,
Markov logic also allows the processing of purely logical first-order formulas.

Definition 3 (Markov logic network). A Markov logic network (MLN) L is
a set of first-order logic formulas Fi, where each formula Fi is quantified by a
real value wi, its weight. Together with a set of constants C it defines a Markov
network ML,C as follows:

– ML,C contains a node for each possible grounding of each predicate appearing
in L.

– ML,C contains an edge between two nodes (i. e. ground atoms) iff the ground
atoms appear together in at least one grounding of one formula in L.

– ML,C contains one feature (function) for each possible grounding of each
formula Fi in L. The value of the feature for a possible world x is 1, if the
ground formula is true for x (and 0 otherwise). Each feature is weighted by
the weight wi of its respecting formula Fi.

According to the above definition, a MLN (i. e. the weighted formulas) defines
a template for constructing ground Markov networks. For a different set C ′ of
constants, a different ground Markov network ML,C′ emerges from L. These
ground Markov networks may vary in size, but their general structure is quite
similar, e. g. the groundings of a formula Fi have the weight wi in any ground
Markov network of L. The ground Markov network ML,C specifies

P (X = x) =
1
Z

exp

(∑
i

wini(x)

)

as the probability distribution over possible worlds x (whereas Z is a normaliza-
tion factor). For each formula Fi, the binary result values of its feature functions
have been incorporated into the counting function ni(x), so ni(x) compactly
expresses the number of true groundings of Fi in the possible world x.

Example 4. In the following example, we model the relations described in Ex. 1
as a MLN (using the Alchemy syntax [15] for MLN files). The “!” operator

used in the predicate declarations of lives in and neighborhood enforces that
the respective variables will have mutually exclusive and exhaustive values,
i. e. that every person lives in exactly one town and one neighborhood (in
terms of ground atoms). The weights of the formulas are to be understood
exemplary (since “realistic” weights cannot be estimated just like that, but
requires learning from data). We declare the typed predicates alarm(person),
neighborhood(person, hood state!), lives in(person, town!), burglary(person), the
types and constants person = {James,Carl}, town = {Freiburg ,Yorkshire,
Austin}, hood state = {Bad ,Average,Good}, and add the following weighted
formulas:

2.2 burglary(x) => alarm(x)
2.2 lives in(x, y) ∧ tornado(y) => alarm(x)
−0.8 neighborhood(x,Good) => burglary(x)
−0.4 neighborhood(x,Average) => burglary(x)

0.4 neighborhood(x,Bad) => burglary(x)

2.3 Relational Maximum Entropy

In this paper we also consider a specific approach for reasoning under maximum
entropy on first-order probabilistic conditional logic [11]. The approach of rela-
tional maximum entropy (RME) employed in this paper is inspired by the work of
Lukasiewicz and Kern-Isberner [16] but combines relational representation and
reasoning under maximum entropy in a new manner, see below for more details.

Knowledge is captured in RME using probabilistic conditionals as in proba-
bilistic conditional logic, cf. [17].

Definition 4 (RME conditional). A RME conditional r = (φ | ψ)[α][c] con-
sists of a head literal φ, a list of n body literals ψ = ψ1, . . . , ψn, a real value
α ∈ [0, 1], and a list of meta-constraints c = c1, . . . , cm, which allows the re-
striction of the substitution for certain variables. A meta-constraint is either an
expression of the form X 6= Y or X /∈ {k1, . . . , kl}, with variables X,Y and
{k1, . . . , kl} ⊆ U . A conditional r is called ground iff r contains no variables.
The set of all RME conditionals is determined as the language (L | L)rel and the
set of all ground conditionals is referred to by (L | L)relU .

Definition 5 (RME knowledge base). A RME knowledge base KB is a quadru-
ple KB = (S,U, P,R) with a finite set of sorts S, a finite set of constants U , a
finite set of predicates P , and a finite set of RME conditionals R. Any constant of
the universe U is associated with one sort in S and Uσ determines the constants
with sort σ. Each argument of a predicate p(σ1, . . . , σk) ∈ P is also associated
with a sort in S, σi ∈ S, 1 ≤ i ≤ k. Furthermore, all variables Var(R) occurring
in R are associated with a sort in S, too. Constants and variables are referred
to as terms t.

Example 5. We represent Ex. 1 as a RME knowledge base KB which consists
of sorts S = {Person,Town,Status}, constants UPerson = {carl , stefan} of
sort Person, UTown = {freiburg , yorkshire, austin} of sort Town, UStatus =

{bad , average, good} of sort Status, predicates P = {alarm(Person), burglary
(Person), lives in(Person,Town), neighbourhood(Person, Status)}, and condi-
tionals R = {c1, . . . , c7}.

c1 = (alarm(X) | burglary(X)) [0.9]
c2 = (alarm(X) | lives in(X,Y), tornado(Y)) [0.9] }
c3 = (burglary(X) | neighborhood(X, bad)) [0.6]
c4 = (burglary(X) | neighborhood(X, average)) [0.4]
c5 = (burglary(X) | neighborhood(X, good)) [0.3]

c6 = (neighborhood(X,Z) | neighborhood(X,Y)) [0.0] [Y 6= Z]
c7 = (lives in(X,Z) | lives in(X,Y)) [0.0] [Y 6= Z]

Notice, that conditionals c6 and c7 ensure mutual exclusion of the states for
literals of neighborhood and lives in.

Semantics are given to RME knowledge bases by grounding R with a grounding
operator (GOP)6 to a propositional probabilistic knowledge base and calculating
the probability distribution with maximum entropy PME

Gχ(R). A GOP (see Fig. 1)
is a type of substitution pattern that facilitates the modeling of exceptional
knowledge. For example, we could add the exceptional rule

c8 = (alarm(X) | lives in(X, freiburg), tornado(freiburg)) [0.1]

to KB in order to model that in Freiburg tornados are usually not strong enough
to cause an alarm. Then the GOP Gpriority would prefer all instances of c8 above
all instances of c2, in which the constant freiburg occurs (for details see [11]).

After R is grounded, Gχ(R) is treated as a propositional knowledge base and
PME
Gχ(R) can be calculated as in the propositional case [17]. A RME conditional
Q ∈ (L | L)rel is fulfilled under the grounding Gχ(R) by the RME knowledge base
R if the following hold:

R |=ME
Gχ Q ⇐⇒ PME

Gχ(R) |= Gχ(Q) ⇐⇒ ∀q ∈ Gχ(Q) : PME
Gχ(R) |= q.

The RME inference process can be divided into three steps: 1.) ground the KB
with a certain GOP Gχ, 2.) calculate the probability distribution PME

Gχ(R) with
maximum entropy for the grounded instance Gχ(R), and 3.) calculate all prob-
abilistic implications of PME

Gχ(R).
A more elaborated overview on the framework of relational maximum entropy

as introduced here is given in [11].

6 In [11] the naive-, cautious-, conservative-, and priority-grounding strategies are
presented and analyzed.

Grounding Operator:

Gχ : P((L | L)rel) → P((L | L)relU)

RME KB:

R ⊆ (L | L)rel

Query:

Q ∈ (L | L)rel

Max-Ent-Reasoner

Gχ(R) ⊆ (L | L)relU

PME
Gχ(R) |= Gχ(Q)

R

q

Gχ(R)

PME
Gχ(R)

Gχ(q)

Fig. 1. RME semantics overview. A RME KB R is transformed into a propositional
representation by the GOP Gχ. The result Gχ(R) is used to calculate the Max-Ent-
distribution PME

Gχ(R) in order to answer the ground query Gχ(q).

3 System Architecture

KReator7 is an integrated development environment for representing, reason-
ing, and learning with relational probabilistic knowledge. Still being in develop-
ment KReator aims to become a versatile toolbox for researchers and knowl-
edge engineers in the field of statistical relational learning. KReator is written
in Java and thus is designed using the object-oriented programming paradigm.
It facilitates several architectural and design patterns such as model-view con-
trol, abstract factories, and command patterns. Central aspects of the design
of KReator are modularity, extensibility, usability, reproducibility, and its in-
tended application in scientific research.

Modularity and Extensibility KReator is modular and extensible with respect
to several components. In the following we discuss just two important aspects.
First, KReator separates between the internal logic and the user interface us-
ing an abstract command structure. Each top-level functionality of KReator is
internally represented and encapsulated in an abstract KReatorCommand. Con-
sequently, the user interface can be exchanged or modified in an easy and un-
problematic way, because it is separated from the internal program structure
by this KReatorCommand layer. As a matter of fact, the current version of
KReator features both a graphical user interface and a command line inter-
face (the KReator console) which processes commands in KReatorScript
syntax (see Sec. 4.1). Second, KReator was designed to support many dif-
ferent approaches for relational knowledge representation, cf. Sec. 2. As a con-
sequence, KReator features very abstract notions of concepts like knowledge
bases, queries and data sets that can be implemented by a specific approach.
At the moment, KReator supports knowledge representation using Bayesian
logic programs (BLPs), Markov logic networks (MLNs), and the relational max-
imum entropy (RME) approach described in Sec. 2.3. Other formalisms will be
integrated in the near future.

7 The “KR” in KReator stands for “Knowledge Representation” and the name
KReator indicates its intended usage as a development environment for knowl-
edge engineers.

Usability and Reproducibility An important design aspect of KReator and es-
pecially of the graphical user interface is usability. While prototypical implemen-
tations of specific approaches to relational probabilistic knowledge representation
(and approaches for any problem in general) are essential for validating results
and evaluation, these software solutions are often very hard to use and differ
significantly in their usage. Especially when one wants to compare different so-
lutions these tools do not offer an easy access for new users. KReator features
a common and simple interface to different approaches of relational probabilistic
knowledge representation within a single application.

Application in Scientific Research Both usability and reproducibility are im-
portant aspects when designing a tool for conducting scientific research. Besides
that, other important features are also provided within KReator. For example,
KReator can export knowledge base files as formatted LATEX output, making
the seamless processing of example knowledge bases in scientific publications
very convenient. KReator records every user operation (no matter whether it
was caused by GUI interaction or by a console input) and its result in a report.
Since all operations are reported in KReatorScript syntax, the report itself
represents a valid script. Therefore the whole report or parts of it can be saved
as a KReatorScript file which can be executed anytime to repeat the recorded
operations.

Used frameworks KReator makes use of well-established software frameworks
to process some of the supported knowledge representation formalisms. Per-
forming inference on MLNs is handled entirely by the Alchemy software pack-
age [15], a console-based tool for processing Markov logic networks. Alchemy
is open source software developed by the inventors of Markov logic networks
and can freely be obtained on http://alchemy.cs.washington.edu/. To pro-
cess ground RME knowledge bases, an appropriate reasoner for maximum en-
tropy must be utilized. KReator does not directly interact with a certain rea-
soner. Instead, KReator uses a so-called ME-adapter to communicate with a
(quite arbitrary) MaxEnt-reasoner. Currently, such an adapter is supplied for
the SPIRIT reasoner [18]. SPIRIT is a tool for processing (propositional) condi-
tional probabilistic knowledge bases using maximum entropy methods and can
be obtained on http://www.fernuni-hagen.de/BWLOR/spirit int/. An ap-
propriate adapter for the MEcore reasoner [19] has also been developed.

4 Usage

KReator comes with a graphical user interface and an integrated console-based
interface. The main view of KReator (see Fig. 2) is divided into the menu and
toolbars and four main panels: the project panel, the editor panel, the outline
panel, and the console panel.

The project panel KReator structures its data into projects which may contain
knowledge bases, scripts written in KReatorScript (see below), query collec-
tions for knowledge bases, and sample/evidence files. Although all types of files

Fig. 2. KReator – Main window

can be opened independently in KReator, projects can help the knowledge en-
gineer to organize his work. The project panel of KReator (seen in the upper
left in Fig. 2) gives a complete overview on the project the user is currently
working on.

The editor panel All files supported by KReator can be viewed and edited in
the editor panel (seen in the upper middle in Fig. 2). Multiple files can be opened
at the same time and the editor supports editing knowledge bases and the like
with syntax-highlighting, syntax check, and other features normally known from
development environments for programming languages.

The outline panel The outline panel (seen in the upper right in Fig. 2) gives an
overview on the currently viewed file in the editor panel. If the file is a knowledge
base the outline shows information on the logical components of the knowledge
base, such as used predicates (and, in case of BLPs, their states), constants, and
sorts (if the knowledge base uses a typed language).

The console panel The console panel (seen at the bottom in Fig. 2) contains two
tabs, one with the actual console interface and one with the report. The console
can be used to access nearly every KReator functionality just using textual
commands, e. g. querying knowledge bases, open and saving file, and so on. The
console is a live interpreter for KReatorScript, the scripting language also
used for writing scripts (see below). The console panel also contains the report
tab. Every action executed in KReator, e. g. opening a file in the graphical

user interface or querying a knowledge base from the console, is recorded as a
KReatorScript command in the report. The whole report or parts of it can
easily be saved as script file and executed again when experiments have to be
repeated and results have to be reproduced.

4.1 The KReatorScript Language

The KReatorScript language incorporates all those commands which can
be processed by the console and by script files as well (see Fig. 3 for some
KReatorScript lines). Since there are commands available for all high-level
KReator functionalities, every sequence of working steps can be expressed
as an appropriate command sequence in a KReatorScript file. Thus, the
(re-)utilization of scripts can clearly increase the efficiency and productivity
when working with KReator. As mentioned above, the input console and re-
port work hand in hand with KReator’s scripting functionality, making the
KReatorScript language a strong instrument in the whole working process.

Besides that, the utilization of scripts plays an important role in the active
development of the KReator software, since it allows efficient and sustainable
testing of high-level functionalities during the whole development process.

Fig. 3. The console with some KReatorScript

4.2 Querying a Knowledge Base

One of the most important tasks when working with knowledge bases is to
address queries to a knowledge base, i. e. to infer knowledge. For that rea-
son, KReator provides several functionalities which simplify the dealing with
queries and make it more efficient.

KReator permits the processing of queries expressed in a unified query
syntax. This query syntax abstracts from the respective syntax which is necessary
to address a “native” query to a BLP, MLN, or RME knowledge base (and which
also depends on the respective inference engine). That way, a query in unified
syntax can be passed to an appropriate BLP, MLN, and RME knowledge base as
well. The idea behind this functionality is, that some knowledge (cf. Ex. 1) can
be modeled in different knowledge representation approaches (cf. Ex. 2, Ex. 4,
and Ex. 5) and the user is able to compare these approaches in a more direct
way. Such a comparison can then be done by formulating appropriate queries
in unified syntax, passing them to the different knowledge bases, and finally
analyzing the different answers, i. e. the probabilities. A KReator query in
unified syntax consists of two parts: In the “head” of the query there are one
or more ground atoms whose probabilities shall be determined. The “body” of
the query is composed of several evidence atoms. For each supported knowledge
representation formalism, KReator must convert a query in unified syntax
in the exact syntax required by the respective inference engine. Among other
things, this includes e. g. the conversion from lower case constants to upper case
ones (and variables, vice versa), as required by the Alchemy tool for processing
MLNs. KReator also converts the respective output results to present them in
a standardized format to the user. Figure 4 illustrates the processing of a query
in unified syntax.

KReator offers the user an easy way to address a query to a knowledge
base, simply by calling its query dialogue. In this dialogue (Fig. 5), the user
can input the atoms to be queried and he can conveniently specify the evidence.
Since evidence usually consists of several atoms and is often reused for different
queries, the user has the option to specify a file which contains the evidence
to be to considered. While processing a query, the output area of the dialogue
informs about important steps of the inference process. The calculated answer
is clearly displayed in the lower part of the dialogue.

The unified query syntax constitutes a compromise between the querying ca-
pabilities of the different knowledge representation formalisms. Therefore, some
individual features of each formalism cannot be express in unified syntax. For this
reason, KReator additionally offers a direct access to the querying capabilities
of each inference engine. This is realized by corresponding console commands
which take a query in “native” syntax as an argument. Besides the capability
of passing individual (i. e. ad-hoc) queries to a knowledge base, KReator also
supports so-called query collections. A query collections is a file which contains
several queries (either in unified or native syntax). Such a query collection can be
passed to a knowledge base, so that all included queries are processed one after
another. That way, KReator supports a persistent handling and batch-style
processing of queries.

 KReator

BLP
KBase
Input

RME
KBase
Input

MLN
KBase
Input

Query in
Unified
Syntax

MECoRe
SPIRIT

Alchemy

BLP | MLN | RME
Answers

BLP
Reasoner

GOP
Algo.

BLP
KBase
Repres.

MLN
KBase
Repres.

RME
KBase
Repres.

Alchemy
Adapter

ME
Adapter

BLP
Query

Converter

RME
Query

Converter

MLM
Query

Converter

Fig. 4. Processing query in unified syntax

Example 6. Continuing our previous examples, now we consider the following ev-
idence given: lives in(james, yorkshire), lives in(stefan, freiburg), burglary(james),
tornado(freiburg),neighborhood(james) = average,neighborhood(stefan) = bad.
The following table shows three queries and their respective probabilities in-
ferred from each of the example knowledge bases. The nine separate calculations
altogether took about three seconds. Each of the three knowledge bases rep-
resents Ex. 1 by a different knowledge representation approach. Nevertheless,
the inferred probabilities are quite similar, except for the significant lower BLP
probability of the query alarm(stefan). This results from using noisy-or as comb-
ing rule in the BLP calculations and from the fact that the CPDs of the BLP
knowledge base carry some information not incorporated in the MLN and BLP
knowledge bases.

BLP MLN RME

alarm(james) 0.900 0.896 0.918
alarm(stefan) 0.650 0.896 0.907
burglary(stefan) 0.300 0.254 0.354

Fig. 5. Querying a knowledge base

5 Summary and Future Work

In this paper we presented KReator and illustrated its system architecture and
usage. Although KReator is still in an early stage of development it already
supports Bayesian logic programs, Markov logic networks, and relational maxi-
mum entropy. Thus KReator is a versatile toolbox for probabilistic relational
reasoning and alleviates the researcher’s and knowledge engineer’s work with
different approaches to statistical relational learning.

Since KReator is still in an early development stage, there are a lot of plans
on future development. The integration of adequate learning algorithms will be
one of our major tasks in the near future, as our main focus so far was the inte-
gration of reasoning components. We also plan to integrate an extended version
of the CONDOR system [20] and other formalisms for relational probabilistic
knowledge representation such as logical Bayesian networks [7] and probabilistic
relational models [9], as well as to use KReator as a testbed to evaluate other
approaches for relational probabilistic reasoning under maximum entropy.

The user interface undergoes a continuous development to further improve
KReator’s usability. KReator’s reporting behavior will be made more con-
trollable and the reusability of the report will be further enhanced, e. g. by a
“group commands per knowledge base” option. The integration of external tools
like Alchemy and SPIRIT will be made more seamlessly and the user will gain a
better control over the exact behavior of these tools.

We plan to enhance KReator’s unified query syntax to allow more com-
plex queries. This requires more sophisticated conversion patterns to translate
a unified query to the respective target syntax, e.g. to handle multi-state BLP
predicates in an automated way. The enhancement of the query syntax will go
along with the development of an even more challenging feature: We plan on
introducing some kind of unified knowledge base (template) format. The final
goal is to be able to formulate (at least) the central aspects of a knowledge base
in a unified syntax and to have this knowledge base be converted to different tar-
get languages (at least semi-)automatically. Having this functionality available
would dramatically improve the handling and comparison of different knowledge
representation formalisms.

KReator is available under the GNU General Public License and can be ob-
tained from http://ls6-www.cs.uni-dortmund.de/kreator/. The future de-
velopment of KReator will also be strongly influenced be the feedback of early
users. We will include such feedback in our development decisions and try to
priorities such aspects which are most important to the users.

Acknowledgements. The research reported here was partially supported by
the Deutsche Forschungsgemeinschaft (grants BE 1700/7-1 and KE 1413/2-1).

References

1. De Raedt, L., Kersting, K.: Probabilistic Inductive Logic Programming. In
De Raedt, L., Kersting, K., Landwehr, N., Muggleton, S., Chen, J., eds.: Prob-
abilistic Inductive Logic Programming. Springer (2008) 1–27

2. Cussens, J.: Logic-based Formalisms for Statistical Relational Learning. In Getoor,
L., Taskar, B., eds.: An Introduction to Statistical Relational Learning. MIT Press
(2007)

3. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In
Getoor, L., Taskar, B., eds.: An Introduction to Statistical Relational Learning.
MIT Press (2007)

4. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical
Relational Learning. In: Proceedings of the ICML-2004 Workshop on Statistical
Relational Learning and its Connections to Other Fields. (2004) 49–54

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann (1998)

6. Wellman, M.P., Breese, J.S., Goldman, R.P.: From Knowledge Bases to Decision
Models. The Knowledge Engineering Review 7(1) (1992) 35–53

7. Fierens, D.: Learning Directed Probabilistic Logical Models from Relational Data.
PhD thesis, Katholieke Universiteit Leuven (2008)

8. Jaeger, M.: Relational Bayesian Networks: A Survey. Electronic Transactions in
Artificial Intelligence 6 (2002)

9. Getoor, L., Friedman, N., Koller, D., Tasker, B.: Learning Probabilistic Models
of Relational Structure. In Brodley, C.E., Danyluk, A.P., eds.: Proc. of the 18th
International Conf. on Machine Learning (ICML 2001), Morgan Kaufmann (2001)

10. Baral, C., Gelfond, M., Rushton, N.: Probabilistic Reasoning with Answer Sets.
Theory and Practice of Logic Programming (2009)

11. Loh, S.: Relational Probabilistic Inference Based on Maximum Entropy. Master’s
thesis, Technische Universität Dortmund (to appear 2009)

12. Thimm, M.: Representing Statistical Information and Degrees of Belief in First-
Order Probabilistic Conditional Logic (In preparation)

13. Ketkar, N.S., Holder, L.B., Cook, D.J.: Comparison of graph-based and logic-based
multi-relational data mining. SIGKDD Explor. Newsl. 7(2) (2005) 64–71

14. Muggleton, S., Chen, J.: A Behavioral Comparison of some Probabilistic Logic
Models. In Raedt, L.D., Kersting, K., Landwehr, N., Muggleton, S., Chen, J., eds.:
Probabilistic Inductive Logic Programming. Springer (2008) 305–324

15. Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., Lowd,
D., Wang, J.: The Alchemy System for Statistical Relational AI: User Manual. De-
partment of Computer Science and Engineering, University of Washington. (2008)

16. Lukasiewicz, T., Kern-Isberner, G.: Probabilistic Logic Programming under Max-
imum Entropy. In: Proceedings ECSQARU-99. (1999) 279–292

17. Rödder, W.: Conditional logic and the principle of entropy. Artificial Intelligence
117 (2000) 83–106

18. Rödder, W., Meyer, C.H.: Coherent Knowledge Processing at Maximum Entropy
by SPIRIT. In: Proceedings UAI 1996. (1996) 470–476

19. Finthammer, M., Beierle, C., Berger, B., Kern-Isberner, G.: Probabilistic Reason-
ing at Optimum Entropy with the MEcore System. In: Proceedings of FLAIRS’09,
AAAI Press (2009)

20. Fisseler, J., Kern-Isberner, G., Beierle, C., Koch, A., Moeller, C.: Algebraic Knowl-
edge Discovery using Haskell. In: Practical Aspects of Declarative Languages, 9th
International Symposium. Springer (2007)

