Plugin Development for KReator

Matthias Thimm

October 18, 2010

Abstract. This document explains how to develop plugins for KReator using
the JAVA programming language. KReator supports the inclusion of plugins that
define knowledge bases, parser, writers, learner, and configuration components us-
ing a specific approach to statistical relational learning. These plugins can easily be
developed by implementing a set of interfaces and using the JSPF framework.

1 Overview

KReator (Finthammer et al., 2009; Thimm et al., 2010; Beierle et al., 2010) is an integrated
development environment for various tasks involving reasoning and learning with approaches
to statistical relational learning (Getoor and Taskar, 2007). Due to its modular architecture
KReator allows the integration of different models by including plugins. By developing a plugin
for KReator there is no need for such cumbersome tasks like implementing a user interface or
developing the logical foundations that are used by most approaches. KReator provides for
all these high-level components and the developer of a plugin can concentrate on implementing
the core components for an individual approach. At the moment, there exist simple plugins for
Bayesian Logic Programs (Getoor and Taskar, 2007; Ch. 10), Markov Logic Programs (Getoor
and Taskar, 2007; Ch. 12), and Relational Maximum Entropy (Loh et al., 2010). Developers of
models for statistical relational learning are encouraged to provide a KReator plugin for their
specific model type. The task of implementing a KReator plugin is eased by the JSFP plugin
framework (Delsaux and Biedert)

This document is a tutorial that guides through the process of developing a plugin for KReator.
It explains what steps are necessary for implementing a working plugin that seamlessly inte-
grates into KReator by presenting the available interfaces.

2 Setup and Plugin architecture

In order to start developing a KReator plugin download the latest version of KReator from
kreator.cs.tu-dortmund.de. In general, KReator comes as a Java library (with the
Jjar-extension) that my be bundled for a specific platform (for example as an .app-file for Mac
OS X). To use the KReator JAR for your plugin you only need to download the unbundled JAR
file.



As a first step you should create a new JAVA project using your favorite development en-
vironment and you must make sure that the KReator JAR is within the build path of this
project (for example in Eclipse! by adding the KReator JAR as an external JAR to your
project). Next, you should create your specific plugin class (by implementing the interface
edu.cs.al.kreator.models.KreatorModelPlugin) which is the only necessary
class for a plugin. This class is responsible for providing all necessary information about your
plugin to the KReator core. Specific details on how to implement this class can be found below,
but first we give an overview on how to implement your actual model in terms of knowledge
bases, parser, learner, writers, and configuration components.

2.1 Knowledge bases

A knowledge base is the central structure used for an approach to statistical relational learn-
ing (and—of course—knowledge representation in general). A knowledge base can be devel-
oped using the comprehensive logic library of KReator (which defines commons structures
such as predicates, variables, rules, ...), see the APl of edu.cs.ai.kreator.logic for
details. A knowledge base must extend the abstract class Knowledgebase from the package
edu.cs.ai.kreator.models and implement the following methods.

public Double query(Query query)

This method computes the probability of the given query. A query is a structure of the form
(¢ | v) and represents the question for the probability of ¢ (some ground atom) given that 1)
(some conjunction of ground literals) is true.

public List<AtomExpression> generateData (int numDataSets)

This method generates data matching the knowledge base’s structure and probabilities used for
testing learning algorithms. For example, suppose your knowledge base consists of a simple rule
“If A(X) is true then B(X) is true with probability 0.9” then a single data set would consist of
{A(c1) = true, B(c1) = true} or {A(ca) = true, B(ce) = false} (for some new constants
c1,c2). The more data sets are requested the more the distribution of the data should fit the
intended probabilities in the knowledge base.

Note: The implementation of this method is optional. If you do not want to provide an imple-
mentation of this method for your model just add the line

throw new UnsupportedOperationException();

to the body of the method.

public String getDescription ()

This method returns a short textual description for the knowledge base type, e. g. for a Bayesian
Logic Program this method returns “Bayesian Logic Program”.

"http://www.eclipse.org



public Set<GeneralizedPredicate> getAppearingPredicates ()

This method returns the set of all predicates that are mentioned in the knowledge base.

public String tolatex()

This method returns a string representation of the knowledge base formatted to be directly used
for IATEX documents.

2.2 Parser

A parser for a knowledge base is responsible for reading some knowledge base defined in some
syntax into a knowledge base object and for each knowledge base type at least one parser must
be defined. A knowledge base parser must extend the abstract class KnowledgebaseParser
from the package edu.cs.ai.kreator.models and implement the following methods.

public Knowledgebase parse (String kbaseString)

Parses the given string into a knowledge base object.

public String getSupportedFileExtension ()

Returns a string representation of the supported file extension of the parser (without the dot).

public String getAcronymForIcons ()

Returns an acronym for knowledge bases supported by this parser. This acronym should be at
most three letters long and will be attached to icons of the knowledge bases in the project tree of
the main KReator window.

public Color getColorForIcons ()

The color used for writing the acronym of the supported knowledge bases in the project tree of
the main KReator window.

2.3 Learner

A learner takes the job of learning a knowledge base from data. A learner must extend the ab-
stract class edu.cs.ai.kreator.models.Learner and implement the following meth-
ods.

public Knowledgebase learnModel (List<AtomExpression> data)

Learns a new knowledge base that fits the given data.



public Knowledgebase learnModel (Knowledgebase startingPoint,
List<AtomExpression> data)

Learns a new knowledge base that fits the given data and uses the given knowledge base as a
starting point for structure learning.

2.4 Writer

A writer is the counter part for a parser and takes the job of providing a string representation
of knowledge base that can be read by its corresponding parser. A writer must be implemented
when providing a learner (otherwise a learned knowledge base cannot be written). A writer has
to extend the abstract class edu.cs.ai.kreator.models.KnowledgebaseWriter
and implement the following methods.

public String write (Knowledgebase kb)

Writes the given knowledge base into a string.

public String getSupportedFileExtension ()

Returns a string representation of the supported file extension of this writer (without the dot).

2.5 Configuration

Most formalisms are configurable as—for example—parameters for the process of learning can
be set. Each plugin may provide some configuration options that are integrated in the KReator
configuration that manages loading and saving. A configuration must implement the interface
edu.cs.ai.kreator.models.ModelConfiguration with the following method.

public ConfigurationCategory getConfig()

This method returns a configuration category that may contain other configuration categories or
configuration options, see the APl of edu.cs.ai.kreator.control.config for more
information.

2.6 Syntax Highlighting

If you want to provide syntax highlighting for the language of the knowledge base type of your
plugin you have to implement several classes. Most importantly you have to provide for a lexer
which implements the interface jsyntaxpane.Lexer. The easiest way to build a lexer is
using JFlex. For more information on how to implement a lexer for the JSyntaxPane framework
(which is used inside KReator) consult the project home page?.

Furthermore you have to extend jsyntaxpane.syntaxkits.KreatorSyntaxKit
and pass your lexer within the single constructor of your syntax Kkit.

http://code.google.com/p/jsyntaxpane/wiki/Customizing



public MySyntaxKit () {
super (new MyLexer());

}

In order to relate the syntax highlighting to the corresponding files you have to implement the
following method.

public String getSupportedFileExtension|()

Returns the file extension of the files, for which this syntax kit provides syntax highlighting.

If the syntax highlighting of the plugin should be configurable, you can simply add an instance of
edu.cs.ai.kreator.control.config.StyleConfigurationCategory to the
model configuration.

myConfigurationCategory.add(
new StyleConfigurationCategory (new MySyntaxKit ()));

2.7 Plugin component

Having implemented classes for knowledge bases, parser, writers, learner, and configuration, the
plugin needs to provide these information to the KReator core. This is done by implementing
the interface edu.cs.ai.kreator.models.KreatorModelPlugin with the methods

public List<...
public List<...
public List<...
public List<...
public List<...
public List<...

providesKnowledgebaseClasses ()
providesKnowledgebaseParserClasses ()
providesKnowledgebaseWriterClasses ()
providesLearnerClasses ()
providesConfigurationClasses ()
providesSyntaxHighlightingClasses ()

vV V.V V V V

In each of these methods the corresponding classes should be returned in a list, e. g. for knowl-
edge bases via

public List<Class<? extends Knowledgebase>> providesKnowledgebaseClasses (){
List<Class<? extends Knowledgebase>> knowledgebases =
new ArrayList<Class<? extends Knowledgebase>>();
knowledgebases.add (MyKnowledgebase.class) ;
return knowledgebases;

}

In order to enable KReator to discover the plugin the JSPF library® has to be included in the
build path and the annotation

@PluginImplementation

has to be placed directly before the plugin class definition inside the class’ file (and you have to
import the package net . xeoh.plugins.base.annotations. *).

Shttp://code.google.com/p/jspf/



3 Threading, System output and Logging

KReator builds heavily on threading for performing all tasks such as reasoning and learning.
The developer should keep this in mind when implementing a model and should pay attention
to defining break points inside time-consumable computations. These break points are used by
KReator to pause or abort the current process. This is done by simply adding the following line
at regular intervals in time-consumable computations:

KreatorMain.getWorkerController () .threadWaitOrAbort () ;

Whenever the above line is executed KReator checks whether the current process should be
paused or aborted due to a user input.

To output some status information on the currently running process to the user the following
line can be used:

KreatorMain.getWorkerController () .getMyWorker ()
.getConsole () .printVerboselLine (SOME_TEXT) ;

Text passed over in this way is outputted to the console of the current process in the main
KReator window.

For debugging and especially error reporting purposes it is always a good idea to log what
a process is currently doing. For this purpose KReator uses the log4j* logging system. When
developing a plugin we advise to use this logger as well. In order to enable logging using log4;j
the developer has to add the corresponding log4;j library to his build path and add the line

public static final Logger LOG =
Logger.getlLogger (MyClass.class);

inside the current class. By invoking LOG.debug (TEXT), LOG.info (TEXT), ..., the de-
veloper can log messages on various logging levels, see the API of log4j for more information.
Messages logged this way are shown in the KReator debugging text pane.

4 Testing

In order to test your plugin inside KReator you can export you plugin project into a JAR and
directly into KReator. But especially during development time making a detour by starting
KReator and loading your plugin can be tedious. So, for debugging purposes you can start
KReator with your plugin already installed using the following simple command:

KreatorMain.startWithPlugin (new MyPlugin());

It suffices to implement a main method in one of your plugin classes that comprises of just this
single line to start a KReator instance with your plugin.

*nttp://logging.apache.org/logd/



S Publishing

When you have finished developing your plugin for KReator please consider publishing it in
form of a JAR to the KReator community at kreator.cs.tu—-dortmund. de.

References

Christoph Beierle, Marc Finthammer, Gabriele Kern-Isberner, and Matthias Thimm. Automated
reasoning for relational probabilistic knowledge representation. In Proceedings of the Fifth
International Joint Conference on Automated Reasoning (IJCAR’10), Edinburgh, UK, July
2010.

Nicolas Delsaux and Ralf Biedert. JSPF: The Java Simple Plugin Framework.
http://code.google.com/p/Jjspf/.

Marc Finthammer, Sebastian Loh, and Matthias Thimm. Towards a Toolbox for Relational
Probabilistic Knowledge Representation, Reasoning, and Learning. In Proceedings of the
First Workshop on Relational Approaches to Knowledge Representation and Learning, pages
3448, Paderborn, Germany, September 2009.

Lise Getoor and Ben Taskar, editors. Introduction to Statistical Relational Learning. MIT Press,
2007.

Sebastian Loh, Matthias Thimm, and Gabriele Kern-Isberner. On the problem of grounding a
relational probabilistic conditional knowledge base. In Proceedings of the 14th International
Workshop on Non-Monotonic Reasoning (NMR’10), Toronto, Canada, May 2010.

Matthias Thimm, Marc Finthammer, Sebastian Loh, Gabriele Kern-Isberner, and Christoph
Beierle. A system for relational probabilistic reasoning on maximum entropy. In Proceedings
of the 23rd International FLAIRS Conference (FLAIRS 10), Daytona Beach, USA, May 2010.



